Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 9 entries in the Bibliography.


Showing entries from 1 through 9


2021

Modeling the Dynamics of Radiation Belt Electrons with Source and Loss Driven by the Solar Wind

Abstract A radial diffusion model directly driven by the solar wind is developed to reproduce MeV electron variations between L=2-12 (L is L* in this study) from October 2012 to April 2015. The radial diffusion coefficient, internal source rate, quick loss due to EMIC waves, and slow loss due to hiss waves are all expressed in terms of the solar wind speed, dynamic pressure, and interplanetary magnetic field (IMF). The model achieves a prediction efficiency (PE) of 0.45 at L=5 and 0.51 at L=4 after converting the electron phase space densities to differential fluxes and comparing with Van Allen Probes measurements of 2 MeV and 3 MeV electrons at L=5 and L=4, respectively. Machine learning techniques are used to tune parameters to get higher PE. By tuning parameters for every 60-day period, the model obtains PE values of 0.58 and 0.82 at L=5 and L=4, respectively. Inspired by these results, we divide the solar wind activity into three categories based on the condition of solar wind speed, IMF Bz, and dynamic pressure, and then tune these three sets of parameters to obtain the highest PE. This experiment confirms that the solar wind speed has the greatest influence on the electron flux variations, particularly at higher L, while the dynamic pressure has more influence at lower L. Also, the PE at L=4 is mostly higher than those at L=5, suggesting that the electron loss due to the magnetopause shadowing combined with the outward radial diffusion is not well captured in the model. This article is protected by copyright. All rights reserved.

Xiang, Zheng; Li, Xinlin; Kapali, Sudha; Gannon, Jennifer; Ni, Binbin; Zhao, Hong; Zhang, Kun; Khoo, Leng;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028988

Radiation belt; Solar wind; flux prediction; radial diffusion; magnetopause shadowing; wave-particle interactions; Van Allen Probes

2019

Empirical Modeling of the Geomagnetosphere for SIR and CME-Driven Magnetic Storms

During geomagnetic disturbances, the solar wind arrives in the form of characteristic sequences lasting from tens of hours to days. The most important magnetic storm drivers are the coronal mass ejections (CMEs) and the slow-fast stream interaction regions (SIRs). Previous data-based magnetic field models did not distinguish between these types of the solar wind driving. In the present work we retained the basic structure of the Tsyganenko and Andreeva (2015) model but fitted it to data samples corresponding to (1) SIR-driven storms, (2) CME-driven storms preceded with a shock ahead of the CME, and (3) CME-driven storms without such shocks. The storm time dynamics of the model current systems has been represented using the parametrization method developed by Tsyganenko and Sitnov (2005), based on dynamical variables Wi, calculated from concurrent solar wind characteristics and their previous history. The database included observations of THEMIS, Polar, Cluster, Geotail, and Van Allen Probes missions during 155 storms in 1997\textendash2016. The model current systems drastically differ from each other with respect to decay rate and total current magnitudes. During SIR-induced storms, all current systems saturate, while during CME-induced disturbances, the saturation occurs only for the symmetric ring current and the tail current. The partial ring current parameters are drastically different between SIR- and CME-induced storm sets. In the case of SIR-driven storms, the total partial ring current is comparable with symmetric ring current, whereas for all CME-induced events it is nearly twice higher. The results are compared with GOES 15 magnetometer observations.

Andreeva, V.; Tsyganenko, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2018JA026008

Magnetic Storms; Magnetosphere; Modeling; Solar wind; spacecraft data; Van Allen Probes

Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections

We study the response of the outer Van Allen radiation belt during an intense magnetic storm on 15\textendash22 February 2014. Four interplanetary coronal mass ejections (ICMEs) arrived at Earth, of which the three last ones were interacting. Using data from the Van Allen Probes, we report the first detailed investigation of electron fluxes from source (tens of kiloelectron volts) to core (megaelectron volts) energies and possible loss and acceleration mechanisms as a response to substructures (shock, sheath and ejecta, and regions of shock-compressed ejecta) in multiple interacting ICMEs. After an initial enhancement induced by a shock compression of the magnetosphere, core fluxes strongly depleted and stayed low for 4 days. This sustained depletion can be related to a sequence of ICME substructures and their conditions that influenced the Earth\textquoterights magnetosphere. In particular, the main depletions occurred during a high-dynamic pressure sheath and shock-compressed southward ejecta fields. These structures compressed/eroded the magnetopause close to geostationary orbit and induced intense and diverse wave activity in the inner magnetosphere (ULF Pc5, electromagnetic ion cyclotron, and hiss) facilitating both effective magnetopause shadowing and precipitation losses. Seed and source electrons in turn experienced stronger variations throughout the studied interval. The core fluxes recovered during the last ICME that made a glancing blow to Earth. This period was characterized by a concurrent lack of losses and sustained acceleration by chorus and Pc5 waves. Our study highlights that the seemingly complex behavior of the outer belt during interacting ICMEs can be understood by the knowledge of electron dynamics during different substructures.

Kilpua, E.; Turner, D.; Jaynes, A.; Hietala, H.; Koskinen, H.; Osmane, A.; Palmroth, M.; Pulkkinen, T.; Vainio, R.; Baker, D.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026238

interplanetary coronal mass ejections; magnetospheric storm; magnetospheric waves; Outer Belt; Radiation belts; Solar wind; Van Allen Probes

Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere During the 1 June 2013 Geomagnetic Storm

Using data from Defense Meteorological Satellite Program 16\textendash18, National Oceanic and Atmospheric Administration 15\textendash19, and METOP 1\textendash2 satellites, we reconstructed for the first time a two-dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in the equatorial plane. This allowed us to corroborate that the dipole mapping works reasonably well during the storm time and that variations of plasma pressure are consistent at low and high altitudes; namely, we observed a drastic increase in plasma pressure a few hours before the storm onset that continued during the storm main phase. Plasma pressure remained elevated during the first 18 hr of the recovery phase and then started to decrease to normal levels. We found that the variation in pressure correlates with the change in the slope of the Dst index, and that the plasma pressure nearly conserved its axial symmetry during the storm, giving one more evidence that the ring current provides the main contribution to the Dst variation. We also found that the plasma pressure in the magnetosphere correlates with the solar wind dynamic pressure with a correlation coefficient exceeding 0.9, which can be related to the pressure balance at the magnetospheric flanks. The results obtained here agree with the concept of the ring current generation by an inner magnetosphere plasma ring in magnetostatic equilibrium.

Stepanova, M.; Antonova, E.E.; Moya, P.S.; Pinto, V.A.; Valdivia, J.A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025965

Dynamic pressure; Geomagnetic storm; inner magnetosphere; plasma pressure; Solar wind; Van Allen Probes

2017

On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*

The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron phase space density (PSD) and solar wind speed, southward IMF Bz, SYM-H, and AL indices are found over wide μ and L* ranges, with higher correlation coefficients and shorter time lags for low-μ electrons than high-μ electrons; the anticorrelation between electron PSD and solar wind proton density is limited to high-μ electrons at high L*. The solar wind dynamic pressure has dominantly positive correlation with low-μ electrons and negative correlation with high-μ electrons at different L*. In addition, electron PSD enhancements also correlate well with various solar wind/geomagnetic parameters, and for most parameters this correlation is even better than that of electron PSD while the time lag is also much shorter. Among all parameters investigated, AL index is shown to correlate the best with electron PSD enhancements, with correlation coefficients up to ~0.8 for low-μ electrons (time lag ~ 0 day) and ~0.7 for high-μ electrons (time lag ~ 1\textendash2 days), suggesting the importance of seed and source populations provided by substorms in radiation belt electron PSD enhancements.

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1002/2016JA023658

Geomagnetic storms; magnetospheric substorms; Phase space density; radiation belt electron content; radiation belt electrons; Solar wind; Van Allen Probes

2015

Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that such \textquotedblleftenergy-dependent\textquotedblright responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021440

energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind

THEMIS observation of intermittent turbulence behind the quasi-parallel and quasi-perpendicular shocks

Turbulence is complex behavior that is ubiquitous in nature, but its mechanism is still not sufficiently clear. Therefore, the main aim of this paper is analysis of intermittent turbulence in magnetospheric and solar wind plasmas using a statistical approach based on experimental data acquired from space missions. The quintet spacecraft of Time History of Events and Macroscale Interactions during Substorms (THEMIS) allows us to investigate the details of turbulent plasma parameters behind the collisionless shocks. We investigate both the solar wind and magnetospheric data by using statistical probability distribution functions of Elsässer variables that can reveal the intermittent character of turbulence in space plasma. Our results suggest that turbulence behind the quasi-perpendicular shock is more intermittent with larger kurtosis than that behind the quasi-parallel shocks, which are immersed in a relatively quiet solar wind plasma, as confirmed by Wind measurements. It seems that behind the quasi-perpendicular shock the waves propagating outward from the Sun are larger than possibly damped waves propagating inward. In particular, we hope that this difference in characteristic behavior of the fluctuating space plasma parameters behind both types of shocks can help identify complex plasma structures in the future space missions. We also expect that the results obtained in this paper will be important for general models of turbulence.

Macek, W.; Wawrzaszek, A.; Sibeck, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021656

intermittency; magnetosheath; shocks; Solar wind; Space plasma; turbulence

2014

An unusual long-lived relativistic electron enhancement event excited by sequential CMEs

An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 \texttimes 102 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 to 3.5 \texttimes 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak remains over 104 cm-2\textperiodcenteredsr-1\textperiodcentereds-1 for about 30 days. The drift-resonance between ULF waves, which arose from high-speed solar wind and frequent impulses of solar wind dynamic pressure, and energetic electrons injected by substorms could be an important acceleration mechanism in this event. The local acceleration by whistler mode chorus could be another mechanism contributing to this enhancement. The plasmaspheric response to the interplanetary disturbances reveals that the enhanced outer zone is divided into two portions by the plasmapause. Accordingly, the slow loss rate in the plasmasphere due to hiss primarily contributed to the long-lived characteristic of this event. This event reveals that the outer zone population behaviors are dominated by the interplanetary variations together with the responses of geomagnetic field and plasmasphere to these variations.

Yang, Xiao; Zhu, Guang; Zhang, Xiao; Sun, Yue; Liang, Jin; Wei, Xin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2014

YEAR: 2014     DOI: 10.1002/2014JA019797

Geomagnetic storm/substorm; Interplanetary magnetic field; Plasmapause; Relativistic electron; Solar wind

2012

Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068

As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere\textendashIonosphere\textendashThermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted test particle simulations of electron dynamics for the CIR subset of the month-long CMIT fields. Dropout in electron flux at geosynchronous orbit and enhancement during recovery phase, characteristic of CIR-driven storms, is seen in these moderate (Dstmin=-56, -33 nT) events, while the two CIRs were characterized by increased solar wind velocity in the 650\textendash750 km/s range. The first beginning March 26 produced a greater enhancement in IMF Bz southward and stronger magnetospheric convection, leading to a greater radiation belt electron response at GOES. This study provides the first comparison of 2D and 3D particle dynamics in MHD simulation fields, incorporating the additional diffusive feature of Shebansky orbit trapping of electrons in the magnetic minima on the dayside above and below the equatorial plane. Overall loss occurs during the main phase for 2D and 3D simulations, while incorporation of plasmasheet injection in 2D runs produces a moderate enhancement for the March 26\textendash30 storm, less than observed at GOES, and recovery to initial flux levels as seen for the April 4\textendash7 storm.

Hudson, M.; Brito, Thiago; Elkington, Scot; Kress, Brian; Li, Zhao; Wiltberger, Mike;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2012

YEAR: 2012     DOI: 10.1016/j.jastp.2012.03.017

Magnetosphere; Modeling; Radiation belts; Solar wind



  1